
CENG3430 Rapid Prototyping of Digital Systems

Lecture 04:

Finite State Machine

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Recall: Comb. vs. Seq. Circuits (Lec03)

• Combinational Circuit: no memory

– Outputs depend on the present inputs only.

– Rule: Use either concurrent or sequential statements.

• Sequential Circuit: has memory

– Outputs depend on present inputs and previous outputs.

– Rule: MUST use sequential statements (i.e., process) .

CENG3430 Lec04: Finite State Machine 2021-22 T2 2

Sequential Circuit

Combinational

Circuit

Memory

(e.g., Latch, FF)

Inputs Outputs

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity DFF_ASYNC is
port(D, CLK, RESET: in std_logic;

Q: out std_logic);
end DFF_ASYNC;
architecture DFF_ASYNC_ARCH of DFF_ASYNC is
begin
process(CLK, RESET) -- sensitivity list
begin
if (RESET = '1') then
Q <= '0'; -- Reset Q anytime

elsif CLK = '1' and CLK'event then
Q <= D; -- Q follows input D

end if;
end process;

end DFF_ASYNC_ARCH;

Recall: SIPO Shift Register (Lab03)

CENG3430 Lec04: Finite State Machine 2021-22 T2 3

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity SIPO_ASYNC is
port(D, CLK, RST : IN STD_LOGIC;

Q : OUT STD_LOGIC_VECTOR(3 downto 0));
end SIPO_ASYNC;
architecture SIPO_ASYNC_ARCH of SIPO_ASYNC is
component DFF_ASYNC is
port(D, clk, reset : in STD_LOGIC;

Q : out STD_LOGIC);
end component;
signal dout : STD_LOGIC_VECTOR(3 downto 0);
begin
DFF0: DFF_ASYNC port map

(D, CLK, RST, dout(0));
DFF1: DFF_ASYNC port map

(dout(0), CLK, RST, dout(1));
DFF2: DFF_ASYNC port map

(dout(1), CLK, RST, dout(2));
DFF3: DFF_ASYNC port map

(dout(2), CLK, RST, dout(3));
Q <= dout;

end SIPO_ASYNC_ARCH;

Can we model a sequential circuit in a more “abstract” way?

Recall: SIPO Shift Register (Lab03)

• Bind the I/O ports and physical pins as following:

– Input: clk=SW7, reset=SW6, D=SW0

– Output: Q0~Q3=LD0~LD3

CENG3430 Lec04: Finite State Machine 2021-22 T2 4

Q(3) Q(2) Q(1) Q(0)

clk reset D

How to use a “real” clock?

Outline

• Finite State Machine (FSM)

– Time Controlling

– State Maintenance

• FSM Types

• Rule of Thumb: FSM Coding Tips

• FSM Examples

– Up/Down Counter

– Pattern Generator

• Use of Real Clock

– Clock Sources of ZedBoard

– Clock Divider

CENG3430 Lec04: Finite State Machine 2021-22 T2 5

• Finite State Machine (FSM) is an abstract model of

a sequential circuit that jumps from one state to

another within a finite pool of states.

• Real-life Example of FSM: Traffic light

• Two crucial factors of FSM:

 time controlling and state maintenance

Finite State Machine (FSM)

CENG3430 Lec04: Finite State Machine 2021-22 T2 6

 Time Controlling

• Both “wait until” and “if” statements can be

used to detect the clock edge (e.g., CLK):

• “wait until” statement:

– wait until CLK = '1'; -- rising edge

– wait until CLK = '0'; -- falling edge

• “if” statement:

– if CLK'event and CLK = '1' -- rising edge

– if CLK'event and CLK = '0' -- falling edge

OR

– if(rising_edge(CLK)) -- rising edge

– if(falling_edge(CLK)) -- falling edge

CENG3430 Lec04: Finite State Machine 2021-22 T2 7

CENG3430 Lec04: Finite State Machine 2021-22 T2

When to use “wait until” or “if”? (1/2)

• Synchronous Process: Computes values only on

clock edges (i.e., only sensitive/sync. to clock signal).

– Rule: Use “wait-until” or “if” for synchronous process:

process

begin

wait until clk='1';

…

end process

Note: IEEE VHDL requires that a process with a wait statement must not
have a sensitivity list, and the first statement must be wait until.

process (clk)

begin

…

if(rising_edge(clk))

…

end process 8

Usage

of
“wait

until”

Usage

of
“if”

 The first statement must be wait until.

 NO sensitivity list implies that there is one clock signal.

 The clock signal must be in the sensitivity list.

 NOT necessary to be the first line.

When to use “wait until” or “if”? (2/2)

• Asynchronous Process: Computes values on clock

edges or when asynchronous conditions are TRUE.

– That is, it must be sensitive to the clock signal (if any), and

to all inputs that may affect the asynchronous behavior.

– Rule: Only use “if” for asynchronous process:

process (clk, input_a, input_b, …)

begin

…

if(rising_edge(clk))

…

end process

CENG3430 Lec04: Finite State Machine 2021-22 T2 9

Usage

of
“if”

 The sensitivity list

should include the

clock signal, and all

inputs that may affect

asynchronous behavior.

Use “if” statement for both sync. and async. processes!

CLK'event vs. rising_edge(CLK) (1/2)

• Both “wait until” and “if” statements can be

used to detect the clock edge (e.g., CLK):

• “wait until” statement:

– wait until CLK = '1'; -- rising edge

– wait until CLK = '0'; -- falling edge

• “if” statement:

– if CLK'event and CLK = '1' -- rising edge

– if CLK'event and CLK = '0' -- falling edge

OR

– if(rising_edge(CLK)) -- rising edge

– if(falling_edge(CLK)) -- falling edge

CENG3430 Lec04: Finite State Machine 2021-22 T2 10

• rising_edge() function in std_logic_1164 library

– It results TRUE when there is an edge transition in the signal

s, the present value is '1' and the last value is '0'.

– If the last value is something like 'Z' or 'U', it returns a FALSE.

• The statement (clk'event and clk='1')

– It results TRUE when the there is an edge transition in the

clk and the present value is '1'.

– It does not see whether the last value is '0' or not.

CENG3430 Lec04: Finite State Machine 2021-22 T2 11

CLK'event vs. rising_edge(CLK) (2/2)

http://vhdlguru.blogspot.hk/2010/04/difference-between-risingedgeclk-and.html

Use rising/falling_edge() with “if” statement!

 State Maintenance

• Method 1: Use memory device(s) (e.g., FF)

• Method 2: Form feedback path(s) in a clocked

process (i.e., a process triggered by a clock)

CENG3430 Lec04: Finite State Machine 2021-22 T2 12

Sequential Circuit

Combinational

Circuit

Inputs Outputs

Feedback Path

(e.g., s <= … s …;)

Sequential Circuit

Combinational

Circuit

Memory

(e.g., Latch, FF)

Inputs Outputs

More abstract

& convenient!

 State Maintenance

13

entity Method_1 is -- use D-FF
port(D, CLK, RST : IN STD_LOGIC;

Q : OUT STD_LOGIC);
end Method_1;
architecture Arch of Method_1 is
component DFF_ASYNC is
port(D, clk, reset : in STD_LOGIC;

Q : out STD_LOGIC);
end component;
signal din, dout: STD_LOGIC;
begin
din <= not (D and dout);
DFF_ASYNC port map(din,CLK,RST,dout);
Q <= dout; -- output

end Arch;

entity Method_2 is -- form feedback path
port(D, CLK, RST : IN STD_LOGIC;

Q : OUT STD_LOGIC);
end Method_2;
architecture Arch of Method_2 is
signal s: STD_LOGIC; -- state
begin
process(CLK, RST) begin
if (RST = '1') then
s <= '0'; -- Async. reset s

elsif rising_edge(CLK) then
s <= not (D and s); -- feedback

end if;
end process; -- clocked process
Q <= s; -- output

end Arch;

CENG3430 Lec04: Finite State Machine 2021-22 T2

D Q

CLK

D Q

RST

din dout
Signal s (i.e., state) forms a feedback

path in a clocked process!
• s holds for one clock cycle.

• not(D and s) takes effect at the next edge.

• <= here can be treated as a flip-flop!

Outline

• Finite State Machine (FSM)

– Time Controlling

– State Maintenance

• FSM Types

• Rule of Thumb: FSM Coding Tips

• FSM Examples

– Up/Down Counter

– Pattern Generator

• Use of Real Clock

– Clock Sources of ZedBoard

– Clock Divider

CENG3430 Lec04: Finite State Machine 2021-22 T2 14

FSM Types

Example: An FSM that outputs a ‘0’ (resp. to ‘1’)

if an even (resp. to odd) number of 1’s have been received.
CENG3430 Lec04: Finite State Machine 2021-22 T2 15

Even

Odd

Reset

1/0 1/1

0/1

0/0

state

/

input

/

output

Even

0

Odd

1

Reset

1 1

0

0

https://www.slideshare.net/mirfanjum1/moore-and-mealy-machines-29553482

• Moore Machine:

– Outputs rely on the

present state only.

• Mealy Machine:

– Outputs rely on both the

present state and inputs.

Combinational Logic

Sequential Logic

Moore Machine

• Moore Machine: Outputs rely on present state only.

CENG3430 Lec04: Finite State Machine 2021-22 T2 16

architecture moore_arch of fsm is
signal s: std_logic; -- internal state
begin
process (s)
begin
OUTX <= s; -- output

end process;
process (CLOCK, RESET)
begin
if RESET = '1' then s <= '0';
elsif rising_edge(CLOCK) then
s <= INX xor s; -- feedback

end if;
end process;

end moore_arch;

Combinational Logic

Sequential Logic

Mealy Machine

• Mealy Machine: Outputs rely on both state and inputs.

CENG3430 Lec04: Finite State Machine 2021-22 T2 17

architecture mealy_arch of fsm is
signal s: std_logic; -- internal state
begin
process (s, INX)
begin
OUTX <= INX xor s; -- output

end process;
process (CLOCK, RESET)
begin
if RESET = '1' then s <= '0';
elsif rising_edge(CLOCK) then
s <= INX xor s; -- feedback

end if;
end process;

end mealy_arch;

Outline

• Finite State Machine (FSM)

– Time Controlling

– State Maintenance

• FSM Types

• Rule of Thumb: FSM Coding Tips

• FSM Examples

– Up/Down Counter

– Pattern Generator

• Use of Real Clock

– Clock Sources of ZedBoard

– Clock Divider

CENG3430 Lec04: Finite State Machine 2021-22 T2 18

Rule of Thumb: FSM Coding Tips

 Maintain the internal state(s) explicitly

 Separate combinational and sequential logics

– Write at least two processes: one for combinational logic,

and the other for sequential logic

• Maintain the internal state(s) using a sequential process

• Drive the output(s) using a combination process

 Keep every process as simple as possible

– Partition a large process into multiple small ones

 Put every signal (that your process must be

sensitive to its changes) in the sensitivity list.

 Avoid assigning a signal from multi-processes

– It may cause the “multi-driven” issue.

CENG3430 Lec04: Finite State Machine 2021-22 T2 19

Outline

• Finite State Machine (FSM)

– Time Controlling

– State Maintenance

• FSM Types

• Rule of Thumb: FSM Coding Tips

• FSM Examples

– Up/Down Counter

– Pattern Generator

• Use of Real Clock

– Clock Sources of ZedBoard

– Clock Divider

CENG3430 Lec04: Finite State Machine 2021-22 T2 20

Sequential

Logic

CENG3430 Lec04: Finite State Machine 2021-22 T2

Combinational Logic

21

• Up/Down Counter: Generates a sequence of

up/down counting patterns.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.Numeric_Std.ALL;
entity counter is
port(
CLK: in std_logic;
RESET: in std_logic;
COUNT: out std_logic_vector

(3 downto 0));
end counter;
architecture counter_arch of counter
is
signal s: std_logic_vector(3 downto
0)) := “0000”; -- state

begin

process(CLK, RESET)
begin
if(RESET = '1') then s <= “0000”;
else
if(rising_edge(CLK)) then
s <= std_logic_vector(
unsigned(s)+1); -- feedback

end if;
end if;

end process;

COUNT <= s; -- Moore Machine

end counter_arch;

FSM Example 1) Up/Down Counter (1/3)

use IEEE.Numeric_Std.ALL;
signal s: std_logic_vector(3 downto 0)) := “0000”; -- state
s <= std_logic_vector(unsigned(s)+1); -- feedback

• A std_logic_vector is merely a collection of std_logic.

– The individual positions have no predefined meaning.

• The IEEE NUMERIC_STD package includes

overloading functions for data types that are more

convenient to use.

– Such as unsigned/signed types and integer type.

• VHDL is a strongly-typed language.

– Signals of different types CANNOT be assigned to each

other without using type casting/conversion.

CENG3430 Lec04: Finite State Machine 2021-22 T2 22

FSM Example 1) Up/Down Counter (2/3)

FSM Example 1) Up/Down Counter (3/3)

CENG3430 Lec04: Finite State Machine 2021-22 T2 23

Type

Casting

Type

Conversion

https://www.bitweenie.com/listings/

vhdl-type-conversion/

Remember to “use IEEE.Numeric_Std.ALL”!

Sequential

Logic

CENG3430 Lec04: Finite State Machine 2021-22 T2

Combinational Logic

24

• Complete the counter FSM by filling in the missing

line if the state is declared as an unsigned type:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.Numeric_Std.ALL;
entity counter is
port(
CLK: in std_logic;
RESET: in std_logic;
COUNT: out std_logic_vector

(3 downto 0));
end counter;
architecture counter_arch of counter
is
signal s: unsigned(3 downto 0) :=
“0000”; -- state

begin

process(CLK, RESET)
begin
if(RESET = '1') then s <= “0000”;
else
if(rising_edge(CLK)) then
s <= s + 1; -- feedback

end if;
end if;

end process;

end counter_arch;

Class Exercise 4.1
Student ID:

Name:

Date:

Sequential

Logic

Combinational Logic

CENG3430 Lec04: Finite State Machine 2021-22 T2 26

• Complete the counter FSM by filling in the missing

line if the state is declared as an integer type:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.Numeric_Std.ALL;
entity counter is
port(
CLK: in std_logic;
RESET: in std_logic;
COUNT: out std_logic_vector

(3 downto 0));
end counter;
architecture counter_arch of counter
is
signal s: integer range 0 to 15

:= 0; -- state
begin

process(CLK, RESET)
begin
if(RESET = '1') then s <= “0000”;
else
if(rising_edge(CLK)) then
s <= s + 1; -- feedback

end if;
end if;

end process;

end counter_arch;

Class Exercise 4.2
Student ID:

Name:

Date:

Integer Type

• An integer type can be defined with or without

specifying a range.

– If a range is not specified, VHDL allows integers to have a

minimum rage of

−2,147,483,647 𝑡𝑜 2,147,483,647

−(231 − 1) 𝑡𝑜 (231 − 1)

– Or a range can be specified, e.g.,

signal int: integer range 0 to 255;

CENG3430 Lec04: Finite State Machine 2021-22 T2 28

• Pattern Generator: Generates any pattern we want.

• Given the following machine of 4 states: A, B, C and D.

– The machine has an asynchronous RESET, a clock signal

CLK, and a 1-bit synchronous input signal INX.

– The machine also has a 2-bit output signal OUTX.
CENG3430 Lec04: Finite State Machine 2021-22 T2 29

A
OUTX=“01”

B
OUTX=“11”

C
OUTX=“10”

D
OUTX=“00”

INX=‘0’

INX=‘0’

INX=‘1’

INX=‘1’INX=‘0’

INX=‘1’

INX=‘1’

RESET
RESET=‘1’ INX=‘0’

FSM Example 2) Pattern Generator (1/2)

Sequential

Logic
Combinational

Logic

CENG3430 Lec04: Finite State Machine 2021-22 T2 30

library IEEE;
use IEEE.std_logic_1164.all;
entity pat_gen is port(
RESET,CLOCK,INX: in STD_LOGIC;
OUTX: out STD_LOGIC_VECTOR(1
downto 0));
end pat_gen;
architecture arch of pat_gen is
type state_type is (A,B,C,D);
signal s: state_type; -- state
begin
process(CLOCK, RESET)
begin
if RESET = '1' then
s <= A;

elsif rising_edge(CLOCK) then
-- feedback
case s is
when A =>
if INX = '1' then s <= A;
else s <= B; end if;

when B =>
if INX = '1' then s <= D;
else s <= C; end if;

when C =>
if INX = '1' then s <= C;
else s <= A; end if;

when D =>
if INX = '1' then s <= C;
else s <= A; end if;

end case;
end if;

end process;
process(s)
begin
case s is
when A => OUTX <= "01";
when B => OUTX <= "11";
when C => OUTX <= "10";
when D => OUTX <= "00";

end case;
end process; -- Moore Machine
end arch;

FSM Example 2) Pattern Generator (2/2)

Enumeration Type

• An enumeration type introduces abstraction into

circuits by allowing users defining a list of values.

– Example:

type colors is (RED, GREEN, BLUE);

signal my_color: colors;

• An enumerated type is ordered.

– The order in which the values are listed in the type

declaration defines their relation:

Each values is greater than the one to the left,

and less than the one to the right.

– Example: a comparison can be:

my_color > RED and my_color < BLUE

CENG3430 Lec04: Finite State Machine 2021-22 T2 31

Class Exercise 4.3

CENG3430 Lec04: Finite State Machine 2021-22 T2 32

Student ID:

Name:

Date:

• Complete the Mealy FSM that

recognizes sequence “10”:

architecture arch of mealy_fsm is
type state_type is (S0, S1);
signal s: std_logic; -- state
begin
process(CLK, RESET) -- seq
begin
if(RESET = '1') then s <= S0;
else
if(rising_edge(CLK)) then
case s is
when S0 =>
if INX = '1' then
s <= S1; -- feedback

else
s <= S0; -- feedback

end if;

when S1 =>
if INX = '0' then
s <= S0; -- feedback

else
s <= S1; -- feedback

end if;
end case;

end if;
end if;

end process;
OUTX <= '1' when(s=__ and INX=__)

else '0'; -- Mealy
end arch;

INX OUTX

Outline

• Finite State Machine (FSM)

– Time Controlling

– State Maintenance

• FSM Types

• Rule of Thumb: FSM Coding Tips

• FSM Examples

– Up/Down Counter

– Pattern Generator

• Use of Real Clock

– Clock Sources of ZedBoard

– Clock Divider

CENG3430 Lec04: Finite State Machine 2021-22 T2 34

Clock Sources on ZedBoard (1/2)

• Processing System

– PS subsystem uses a dedicated

33.3333 MHz clock source with

series termination.

• IC18, Fox 767-33.333333-12

– PS subsystem can generate up to

four phase-locked loop (PLL)

based clocks for the PL system.

• Programmable Logic

– An on-board 100 MHz oscillator

supplies the PL subsystem clock

input on bank 13, pin Y9.

• IC17, Fox 767-100-136

CENG3430 Lec04: Finite State Machine 2021-22 T2 35

http://zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v2_2.pdf

https://www.electronics-tutorials.ws/oscillator/oscillators.html

Clock Sources on ZedBoard (2/2)

• To use the on-board 100 MHz clock input on bank 13,

pin Y9, you need to include the following in your XDC

constraint file:

set_property IOSTANDARD LVCMOS33 [get_ports clk]

set_property PACKAGE_PIN Y9 [get_ports clk]

create_clock -period 10 [get_ports clk]

Note:

• The constraint -period 10 is only used to inform the tool that clock

period is 10 ns (i.e., 100 MHz).

• The constraint -period 10 is NOT used specify or generate a

different clock period from a given clock source.

CENG3430 Lec04: Finite State Machine 2021-22 T2 36

http://zedboard.org/content/changing-frequency-clock-using-createclock

Clock Divider (1/2)

• In practice, we often need clocks of different rates.

• Example: How to create a 1 KHz clock from the on-
board 100 MHz oscillator (clk)?

CENG3430 Lec04: Finite State Machine 2021-22 T2 37

… … ……
100 MHz

Clock

1 second

100 M x

100 M / 1 K = 100,000 x

1 ms

…1 KHz

Clock

1 K x

Clock Divider (2/2)

• Trick: If we make a counter (count) that counts n

cycles, then we can generate a pulse (ms_pulse)

when the counter is at any particular value n.

CENG3430 Lec04: Finite State Machine 2021-22 T2 38

signal ms_pulse: STD_LOGIC:='0';
signal count: integer:=0;
process(clk)
begin
if rising_edge(clk) then
if (count = (50000-1)) then
ms_pulse <= not ms_pulse;
count <= 0; -- reset count

else
count <= count + 1;

end if;
end if;

end process;

…
100 MHz

Clock

1 ms

1 KHz

Clock

100 M / 1 K = 100,000 x

ms_pulse

Class Exercise 4.4

• Complete the code that creates a 50 Hz clock from
the on-board 100 MHz oscillator (clk):

CENG3430 Lec04: Finite State Machine 2021-22 T2 39

Student ID:

Name:

Date:

signal pulse: STD_LOGIC:='0';
signal count: integer:=0;
process(clk)
begin
if rising_edge(clk) then
if (count = (________-1)) then
pulse <= not pulse;
count <= 0; -- reset count

else
count <= count + 1;

end if;
end if;

end process;

20 ms

…
100 MHz

Clock

50 Hz

Clock

100 M / 50 = 2,000,000 x

pulse

Generating Multi-Clocks (1/2)

• Method 1: Create entity/process for each of clocks

CENG3430 Lec04: Finite State Machine 2021-22 T2 41

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.Numeric_Std.all;
entity clk_1hz is
port(clk : in std_logic;

clk_out : out std_logic);
end clk_1hz;
architecture arch_clk_1hz of clk_1hz is
signal pulse : std_logic := '0';
signal count : integer := 0;

begin
process (clk)
begin
if rising_edge(clk) then
if (count = (50000000 - 1)) then
pulse <= not pulse;
count <= 0; -- reset count

else
count <= count + 1;

end if;
end if;

end process;
clk_out <= pulse;

end arch_clk_1hz;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.Numeric_Std.all;
entity clk_4hz is
port(clk : in std_logic;

clk_out : out std_logic);
end clk_4hz;
architecture arch_clk_4hz of clk_4hz is
signal pulse : std_logic := '0';
signal count : integer := 0;

begin
process (clk)
begin
if rising_edge(clk) then
if (count = (12500000 - 1)) then
pulse <= not pulse;
count <= 0; -- reset count

else
count <= count + 1;

end if;
end if;

end process;
clk_out <= pulse;

end arch_clk_4hz;

Drawback: Most of the codes are redundant!

Generating Multi-Clocks (2/2)

• Method 2: Use generic

CENG3430 Lec04: Finite State Machine 2021-22 T2 42

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.Numeric_Std.all;
entity generic_ex is
port(clk : in std_logic);

end generic_ex;
architecture arch_generic_ex of generic_ex is
signal clk_1, clk_4 : std_logic;
component clock_divider is
generic (N : integer);
port(clk : in std_logic;

clk_out : out std_logic);
end component;

begin
clk_1hz: clock_divider

generic map (N => 50000000)
port map(clk, clk_1);
-- instantiation

clk_4hz: clock_divider
generic map(N => 12500000)
port map(clk, clk_4);
-- instantiation

end arch_generic_ex;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.Numeric_Std.all;
entity clock_divider is
generic (N : integer);
port(clk : in std_logic;

clk_out : out std_logic);
end clock_divider;
architecture arch_clock_divider of
clock_divider is
signal pulse : std_logic := '0';
signal count : integer := 0;

begin
process (clk)
begin
if rising_edge(clk) then
if (count = (N - 1)) then
pulse <= not pulse;
count <= 0; -- reset count

else
count <= count + 1;

end if;
end if;

end process;
clk_out <= pulse;

end arch_clock_divider;

generic: Key to Parameterized Entity

• In VHDL, you can create a “parameterized entity” by

including a generic clause that lists all supported

parameters (i.e., generics) in the entity declaration.

generic (PARA_NAME: <type> [:= <value>]);

– Note: Default values are optional for generics and can be

given in the entity declaration or the component declaration.

• You can then instantiate a parameterized entity with a

component instantiation statement in a similar way as

instantiating an unparameterized entity.

– Generics can be set (via generic map) in the instantiation.

generic map (PARA_NAME => <value>)

CENG3430 Lec04: Finite State Machine 2021-22 T2 43

Summary

• Finite State Machine (FSM)

– Time Controlling

– State Maintenance

• FSM Types

• Rule of Thumb: FSM Coding Tips

• FSM Examples

– Up/Down Counter

– Pattern Generator

• Use of Real Clock

– Clock Sources of ZedBoard

– Clock Divider

CENG3430 Lec04: Finite State Machine 2021-22 T2 44

